

고열전도도 마그네슘 합금

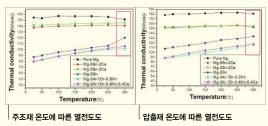
기술분류 | 기계/소재 기술구분 | 상용화·제품화

기술개요

▼석(Sn), 칼슘(Ca) 및 마그네슘(Mg)을 포함하여 이루어지며 낮은 밀도를 가지면서 동시에 우수한 열전도도를 가지는 고열전도도의 마그네슘 합금을 제공함

【 기술의 특징 및 효과 】

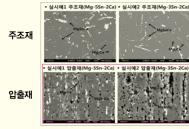
기술의 특징


- 본 기술은 경량성, 고방열성 및 고온 압출 안정성을 갖는 고열전도도 마그네슘 합금을 제공함
- 본 기술은 열전도도가 우수한 마그네슘 합금 주조재 및 인장강도/연신율이 우수한 마그네슘 합금 압출재를 제공함

기술의 효과

- 본기술의 마그네슘 합금(Mg-Sn-Ca)은 기존 상용화 마그네슘 합금(AZ31)에 비해 열전도도가 약 2배 향상된 고열전도도 마그네슘 합금을 제공함
- 본 기술의 마그네슘 합금은 압출 성형성이 우수한 합금 개발로 방열특성 및 압출 생산성이 향상되는 효과가 있음
- 본 기술의 마그네슘 합금을 이용하여 경량 및 방열 특성이 요구되는 LED 조명용 히트싱크, 휴대용 전자기기, 자동차 등에 활용이 가능함

【 주요도면/사진 】


〈마그네슘 합금(MG-SN-CA) → 열전도도 향상〉

합금명	조성비	주조재 @300℃	압출재 @300℃	
800	(중량 wt%)	열전도도(W/mk)	열전도도(W/mk)	
실시예 1 (Mg-5Sn-2Ca)	Mg : Sn : Ca= 93: 5: 2	137.518	152.523	
실시예 2	Mg : Sn : Ca=	141.74	151,287	
(Mg-3Sn-2Ca)	95: 3: 2	141.74	131.207	
상용 마그네슘 합금(AZ31)	Mg : Al : Zn : Mn= 95.8 : 3 : 2 : 0.2	80.248	88.179	

실시예1는 상용 마그네슘 합금보다 열전도도 약 2배 향상 → 인장강도 및 연실율이 우수

〈압출 성형성 표면 양호, 외관 양호〉

MG2CA↓, MGSNCA↑

표면 O 외관 O

찰금	압출은도 (°C)	Ram speed (mm/sec)	입물성	시편의관
실시예 1	350	14	표면, 외관 (O)	
	400	14	표면, 의원 (O)	
실시예 2	550	14	표면, 약관 (0)	
	400	14	표면, 외관 OX)	표면 산화, 크랙 발생
상용 MG 합금 (AZ31)	350	14	표면산화 00	표면 산화
	400	14	표면 신화 (X)	표면 산화

실시예1는 400℃에서 표면 및 외관 양호 → 고온 압출 공정에서 안정성 증가

【 기술 동향 】

• 마그네슘 합금 기술

- 마그네슘의 활발한 반응성으로 인해 제품을 제조하거나 사용하는 과정에서 발화 또는 연소에 의한 피해를 방지하기 위해 고온에서 대기 중에 노출되어도 쉽게 발화되지 않는 난연성 마그네슘 소재에 대한 요구가 증가
- 2010년, 합금원소의 복합 첨가를 통한 최소한의 합금원소 첨가로 난연성, 기계적 특성, 내식성 향상된 연구개발 진행 2016년 마그네슘 합금이 적용된 LG노트북 '그램15' 출시
 - 무게가 단 980g으로 15.6인치 노트북 중 세계에서 가장 가벼운 제품
- 이후, 마그네슘합금 판재의 적용으로 가공용 마그네슘합금에 대한 수요가 증가함에 따라 압출재 개발 및 적용이 활발하게 추진되고 있음
- 압출재 적용을 위해서는 고특성 합금의 개발과 함께 가격 경쟁력 확보를 위해 중·대형 빌렛 연속주조기술 및 고속압출 기술 등의 개발이 요구되고 있음

* 출처 : 한국산업기술진흥원, 소재부품산업 이슈보고서

【시장동향】

- 세계 마그네슘 합금 시장은 2018년 13억 330만 달러에서 연평균 성장률 12.7%로 증가하여, 2023년에는 23억 6,950만 달러로 전망
- 합금 종류에 따라 주조 합금 ,단련용 합금으로 분류되며, 주조 합금 시장은 2023년 19억 510만 달러, 단련용합금 시장은 2023년 4억6,430만달러로 나타남
- 마그네슘 합금은 최종 이용 산업에 따라 자동차 및 운송산업, 전자장치산업, 항공우주 및 방위산업, 전동도구산업 등으로 부르
 - 자동차 및 운송산업은 2018년 대비 연평균 성장률 13.2%로 증가하여 2023년에는 19억 7,140만 달러로 전망
- 전자장치산업은 2018년 대비 연평균 성장률 10.8%로 증가하여, 2023년에는 2억 1,910만 달러로 전망

* 출처 : 연구개발특구진흥재단, 마그네슘 합금 시장

【 기술적용 및 활용분야 】

- 마그네슘 합금의 주조 기술 또는 고속 압축 기술 개발이 지속적으로 이루어지고 있음
- 본 기술은 고온 압출 공정에서 표면 및 외관이 일정하게 제조됨에 따라 방열 및 압출 특성이 향상되어 전기자 동차 산업, 노트북, LED 방열 부품 등의 전자장치 산업 및 항공·우주·방위 산업에 활용 가능성이 높음

【 지식재산권 현황 】

No.	특허명		출원일자	출원번호	등록번호
1	고열전도도 마그네슘 합금	20	013.12.04	10-2013-0149771	10-1573713