「2024 기술인재양성교육」모집 안내

우리 재단에서는 제조현장 경험과 노하우가 풍부한 일본의 베테랑기술자를 활용하여, 기업현장의 애로기술을 분석하고 해결방안을 제시하는 **「기술인재양성교육」**의 참가기업을 아래와 같이 모집하오니, 관심 있는 기업의 많은 참여 부탁드립니다.

1 교육 개요

○ 기 간 : 2024년 5월 28일(화)~31일(금)

○ 장 소 : YBM연수원(경기 화성)

○ 대 상 : 중견·중소기업 재직자 40명(7개 교육과정별 5~6명)

○ 진 행: 합숙교육(3박 4일) *출퇴근 가능, 순차통역(한국어↔일본어)

○ 지원사항 : 교육비(강사 및 통역), 교재(기술용어집 3종 포함),

숙식(숙소 2인 1실), 수료증 ※전 교육일정 수료자에 한해 수료증 발급

○ 참 가 비 : 무료

○ 교육구성

	구	분	내 용	시간할당
Ç i		이론강의	○ 기업의 전문기술과 현재 기술수준 향상에 필요한 기술교육	(4시간) 19.5%
	일본 강사	과제지도 (사례연구)	○ 현장의 기술적 애로사항을 해결하기 위한 과제별 지도교육 - 연수생 과제(신청서 기재분)에 관한 지도 + 동종업계 종사자인 타 연수생과 의견교환(토론)	(11.5시간) 56.1%
	개선인	안정리	○ 과제지도에서 도출된 개선안 개별정리 - 교육내용 정리 및 발표자료(PPT) 작성	(3시간) 14.6%
	결과발표회 (과정별)		○ 문제점 해결방안 발표 및 총평 - 연수생별 과제 개선안 발표, 강사 강평 등	(2시간) 9.8%

《참고》 교육연계 현장지도 교육 종료 후, 희망자에 한해 실시

O내 용 : 본 교육 종료 후, 일본인 강사가 참가기업에 직접 방문하여 교육 당시 개선안의 현

장 적용 연계 지도

O일 시 : 2024년 6월 18일~7월 26일 중 **4일간/1社** O대 상 : 본 교육 참가기업 중 희망기업 약 2~3사

O참가비 : 40만원/1사 *기술자 지도비, 통역비 등 소요비용의 약 10%

(기업방문 시 교통편(호텔↔회사) 및 중식 제공은 기업부담)

○ 교육과정(7개 과정, 각 과정별 5~6명)

No	과 정	강 사	내 용
1	片見 日는 금형설계 (헴미 히데오		- 금속 프레스 가공의 금형(주로 시보리 순송금형) 설계 방법 - 금형 부품의 적정 가공 방법 - 프레스 가공에서의 양산 중 트러블에 대한 원인 규명 방법 - 트러블 해소의 수법
2	소성가공 (금속)	中崎 信行 (나카자키 노부유키)	 냉간·열간 단조 가공 단조품 형상 불량의 원인을 표면화하여 대책 입안 냉간·열간 단조 가공의 단조 금형 수명 문제의 원인을 표면화하여 대책 입안 냉간·열간 단조품 공정설계, 금형설계 애로문제 해결 단조용 컴퓨터 시뮬레이션의 사용 방법과 활용 방법 열간 압출 가공의 가공품 정밀도, 품질 개선, 수율 개선 볼트너트, 나사부품설계, 생산기술 애로문제 지도 금속 파이프의 휨 가공, 단말 가공의 불량 대책 기타 금속 소성가공 문제(프레스 판금 가공은 제외)
3	열처리와 표면경화	仁平 宣弘 (니히라 노부히로)	- 금속재료를 대상으로 한 열처리 및 표면경화법의 기초(종류와 그 역할) - 기계 부품의 기계적 특성을 조정하기 위한 열처리 및 열처리 기술(담금질, 열반죽, 서브제로 등) - 기계 부품의 표면 경화 기술(고주파 담금질, 침탄 담금질, 질화 처리 등) - 공구, 금형을 대상으로 한 PVD 및 CVD에 의한 경질막 코팅 기술 - 열처리·표면경화 제품에 생긴 결함의 원인 조사법과 그 개선책 제안
4	IT생산관리 (DX)	熊澤 壽人 (구마자와 히사토)	- IT를 활용한 생산관리수법 - 계획 매입에서 출하까지의 생산계획/조업계획의 IT화 - 자동화 설비와 작업 분석 - 시스템 개발의 생산성 향상 - 클라우드와 빅데이터의 활용 - 시를 활용한 생산계획의 자동화 - 5S운동의 정착 방법 - 수주에서 출하까지의 생산지시와 제조지시의 자동화 - 업무개선 및 성력화에 대한 컴퓨터 시스템 개발

No	과 정	강 사	내 용
5	자동화 (FA)	竹内 利一 (다케우치 도시카즈)	 자동화 설비의 설계 방법(각종 설계 방법과 그 선택 방법) 자동화 설비의 평가 방법(비용 편익 분석법, 점수 평가법, 소거법) 생산효율 저해요인과 설비효율(가동률과 가동율, 설비종합효율) 자동화 설비의 생산성 향상 방안(사이클 타임 단축, 연속 운전 시간 연장) 자동화 설비의 일시정지 대책(일시정지의 요인, 일시정지 대책의 진행 방법) 로봇·협동 로봇 도입의 개념(도입 메리트, 시스템 구축의 흐름)
6	화학소재 (나노입자)	川本 昂 (가와모토 아키라)	 화학소재의 성형과정에서 발생하는 과제들의 원인분석과 해결책 제시 합성수지나 고무에 대한 충전제 첨가 효과 명시 폴리머끼리 혼합하는 폴리머 블렌드에 의한 상구조 형성과 기능성 발현 유무기 나노입자 합성법, 친수성 및 소수성이 입자 분산과 응집에 미치는 영향 전고체 전지, 수지 전지, 박형 태양전지 전극에 나노 카본 첨가 효과 금속 입자나 카본 입자의 크기 효과에 따른 촉매 성능 발현, 촉매 활성 다원소 합금 촉매, 수소 제조용 촉매, 연료전지 촉매 개발 기술 지원 회수한 CO2로부터 합성하는 합성유나 메탄, 탄소 섬유 등의 화학소재 지금 주목받고 있는 스마트 텍스타일, 웨어러블에 필요한 기능
7	마케팅 (해외수출지원)		- 마케팅개론 - 마케팅의 기본적인 사고방식 - 자사에서 할 수 있는 마케팅 분석 방법 - 분석 결과를 바탕으로 브로슈어나 웹 광고 작성 방법 - 일본인 기질과 한국인 기질의 차이 - 일본의 비즈니스 문화 - 과거에 실시한 마케팅 지원에 대해서

[※] 모집기간 중이라도 신청률에 따라 과정별로 조기마감 예정 / 1사당 1명 이상 신청 가능

2 신청 안내

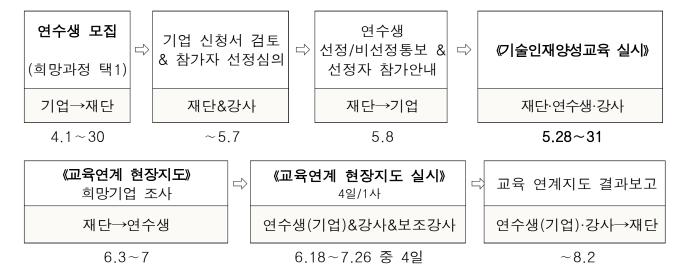
- 신청기간 : 2024년 4월 1일(월)~30일(화) 18:00까지 *신청률에 따라 과정별 조기마감 가능
- 제출서류 ① 참가신청서(재단양식)
 - ② 사업자등록증 1부
 - ③ 기업소개서(일문 또는 영문) 1부(2~3매 내외) ※공정흐름도 포함
 - ④ 애로기술 사진 및 영상자료

ㅇ 신청방법

[참고 1] 강사 정보[전문분야] 검토 후 희망 과정 택1 ☞ 재단 홈페이지 (www.kjc.or.kr) ☞ '재단활동(모집안내)' ☞ 「2024 기술인재양성교육 참가 모집」 클릭 ☞ 하단 '신청하기' ☞ 신청서 작성

※신청완료 후, 참가자 이메일로 신청서 접수완료(접수번호) 메일 자동 발송

【신청서 수정】 · · · 접수일로부터 5일 이내 수정 가능


참가자 이메일로 전송된 **접수번호**와 **사업자등록번호** 입력 후 수정 ※신청서는 최종 접수 완료 후 번역하여 일본 강사에게 전달됩니다.

○ 유의사항

- 본 교육은 기업의 애로기술 해결을 목표로, 연수생의 적극적인 자세가 과제 해결 및 교육 만족도로 이어집니다. 따라서, 신청서는 최대한 **구체적**이고 **명** 확하게 작성해주시기 바랍니다.
- 신청서에 작성한 내용은 본 교육 시 '【과제지도(사례연구)】'에 활용됩니다. 또한, 신청서 번역본을 일본 강사가 검토 후 지도 가능 여부를 판단하며, 이는 참가자 선정심의*에 반영됩니다.
 - *참가자 선정심의 : 과정 및 강사의 지도 가능 분야와 과제 내용 일치 정도, 신청서 내용 (구체성 등)을 기준으로 선정
- 과정별 소그룹 형식으로 운영되므로 선정통보(5/8 예정) 이후 기업 및 개인 사정으로 인한 중도사퇴가 불가합니다. 단, 기업 내 다른 직원으로 대참은 가능하오니 대참 시, 사전에 반드시 사무국으로 연락 바랍니다.
 - ※대참자는 제출 과제(신청서 기재내용) 숙지 필수

- 대참자 없이 최종 사퇴할 경우, 연수원 이용 취소 수수료는 기업부담으로 처리되오니, 교육 일정(5/28~31) 확인 후 신청 바랍니다.
- 문의처 : 산업협력실 권여빈 연구원 102-3014-9814 / ≥ybkwon@kjc.or.kr

3 추진일정(안)

고관: KJCF (제) 한영산업·기술협력재단

참 고 1. 강사 정보(전문분야) 1부.

참 고 2. 교육 프로그램 일정(안) 1부. 끝.

참 고 1 강사 정보(전문분야)

과 정	강 사 명(이력) / 전 문 분 야			
	片見 日出夫(헴미 히데오)			
	· 야마가타현립덴도고등학교 상업과 졸업 · 마스다제작소, 마스다자동차, 클린정공㈜ 근무 · 기술지도원 면허(기계과), 야마가타대학교 제조 시니어 인스트럭터			
금형설계	O 전문분야 - 금형의 설계, 금형부품 가공, 조립, 양산 시의 트러블 해소 - 금속 프레스의 무이음매 각통압축 및 원통압축, 뽑기, 밴딩 금형 등 금형 전반의 설계제작, 트라이아웃 지도 - 양산시에 발생하는 순간정지 사고 · 문제에 대한 대처, 문제 해결 지도 - 새로운 가공방법 제안 및 설비개발 제안			
	中崎 信行(나카자키 노부유키)			
	 ・ 도쿄이과대학교 이학부 (학사) ・ 방위성 방위대학교 이공학연구과 (석사, 재료가공 강좌 강사) ・ 마쓰모토중공업 근무 ・ (現) 나카자키 기술컨설턴트 사무소 대표 ・ 일본금속학회, 일본소성가공학회 정회원 			
소성가공 (금속)	○ 전문분야 - 단조(냉간단조, 열간단조) : 공정설계, 금형설계, 소재 금속재료, 시뮬레이션 연구, Former단조, 프레스단조, 기계구조용강의 단조 및 합금단조, 비철금속단조 - 전조가공 : 나사전조, 스플라인 전조, 기어전조, 나사 체결공학 - 압출가공 : 알루미늄 합금, 동합금 - 튜브포밍 : 굽힘(밴딩)가공, 관단가공 - 단조 기초기술(소재재질, 소재형상, 완성품 형상, 공정설계, 가공설비 선택, 가공하중, 금형설계, 윤활법 결정, 마무리가공, 열처리가공, 가공온도 설계)			

과 정	강 사 명(이력) / 전 문 분 야		
열처리와	 仁平 宣弘(니히라 노부히로) ・시바우라공업대학교 금속공학과(학사) ・동경도립 공업기술센터, 산업기술연구소 근무 ・(現) 니히라기술사사무소 대표 ・(現) 도쿄도립산업기술연구센터 개발본부 기술 어드바이저 ・자격증: 기술사(금속부문) 		
표면경화	○ 전문분야 - 열처리 기초기술(강철의 구조·성질, 강철의 변태(變態), 풀림, 뜨임, 평형상태도, CCT곡선, TTT곡선 등) - 강철재료의 일반 열처리기술(풀림, 담금질, 뜨임, 고용화 열처리 등) - 표면 열처리 기술(침탄 담금질, 질화처리, 고주파 담금질 등) - 공구강 열처리기술: 담금질, 뜨임, 서브제로처리, 탄화물의 거동 등 - 스테인리스강 열처리기술: 풀림, 뜨임, 고용화 열처리 - PVD/CVD에 의한 경질막 코팅기술(티탄계 경질막, DLC막 등) - 철강열처리품 손상과 그 대책기술(파괴, 부식 등)		
	熊澤 壽人(구마자와 히사토)		
IT생산관리	 와세다대학 제1이공학부 응용물리학(학사) 와세다대학원 이공학연구과(석사) 닛폰강관주식회사 근무(공장 설비 제어 기술 및 정보시스템) 케이엠소프트 기술사사무소 자격증: 기술사(마이크로소프트 MCP) 		
(DX)	○ 전문분야 - 생산관리 낭비 제거, 재고 삭감, 작업 효율화, 품질 향상 - 조업 개선 5S 운동, 도요타 생산방식 - 계획 매입부터 출하까지의 생산계획, 조업계획의 지능화, Al화, IT화 - 자동화 설비 및 작업을 분석하여 기계화 및 자동화 추진 - 시스템 개발: 사람의 작업을 컴퓨터로 대체함으로써 성력화 및 신속화 추진		

과 정	강 사 명(이력) / 전 문 분 야		
자동화(FA)	竹内 利一(다케우치 도시카즈) · 도쿄전기대학 공학부 정밀기계공학과 졸업 · ㈜히타치산기엔지니어링, 히타치플랜트메카닉스 33년 근무 · (現) 다케우치기술사 사무소 대표 · 도쿄전기대학 비상근 강사(엔지니어링 디자인 개론) · 자격증 : 기술사(기계부문)		
	- 로봇 주변장치(반송 대차, 부품 공급장치 외)의 계획, 설계, 기술지도 - 로봇 자동 용접설비의 계획, 설계, 기술지도 - 탄 회수장치(사격장의 탄 회수 대차)의 계획, 설계, 기술지도 - 자동 반송대차(코일 반송, 축 부품 반송)의 계획, 설계, 기술지도		
	川本 昂(가와모토 아키라) · 나고야대학 대학원 공학연구과(박사) · 후쿠이공업고등전문학교 전기공학과 교수 · ㈜나노브레인 대표		
화학소재 (나노입자)	 기타: IEEJ프로페셔널(전기학회) 상급회원 ○ 전문분야 전기전자, 복합수지, 나노카본, 기능성 섬유, 센서, 나노테크 고분자 폴리파라x실릴렌 증착중합, 유·무기 나노컴포지트 뇌파센서 제작과 생체센싱 유기색소 분산 고분자 박막을 이용한 유기EL소자의 제작 고분자 분산 CNT 수소센서 제작, 색소분산 고분자 터널소자의 제작 수소·산소 연료전지에 필수적인 화학소재, 합성수지를 사용한 신형 리튬 이온전지 '전체수지전지', 기능성 합성수지에 필요한 질화알루미늄 등의 나노세라믹스 합성이나 나노카본 합성, 합성수지에 금속나노 입자를 분산한 나노 페이스트의 합성 		

과 정	강 사 명(이력) / 전 문 분 야
	小山 浩二(고야마 코지)
마케팅 (해외수출지원)	· 가나가와현립 아사히고등학교, 한국 건국대학교 · 성북흥업(주), ㈜헤세이 프론트 근무 · (現) KY플래닝 대표이사 · 자격증 : 1급건축시공관리기사, 1급토목시공관리기사 O 전문분야 - 시장조사 수법 - 시장조사 분석법 - 품질관리로 이용되는 특성요인도(fishbone chart)의 응용형에 의한 분석방법 - 결정목분석(decision tree) : 분석결과를 기반으로한 프레젠테이션 방침의 결정법 *참고 정도 - 전시회 등을 위한 팸플릿 제작 및 프레젠테이션 : 일본기업과의 신뢰구축 요령 - 한국과 일본의 비즈니스 문화차이

참 고 2 프로그램 일정(안)

일자	시 간	내 용	장 소
	11:30~12:00	접 수	3F 대강의실
	12:00~13:00	중 식	B1F 식당
	13:00~13:30	【개강식&전체OT】 주관기관, 강사, 보조강사, 통역사 소개 및 프로그램 안내	3F 대강의실
E/20	13:30~14:00	【각 과정별 OT】 명함교환 및 자기소개, 과정별 강의 진행방법 논의	
5/28 (화)	14:00~16:00	【이론강의】 현장에서 필요한 기초지식 등 이론강의	3F 과정별
	16:00~17:30	【과제지도(사례연구)】 연수생별 과제(애로기술) 소개 및 공유(각2~3분)	강의실
	17:30~19:00	연수생별 개별과제에 대한 순차지도 및 토론 입 실	 숙소동
	19:00~20:30	^{답 글} 결 단 식 (석식)	
	07:00~08:30	호 한 국 (국국) 조 식	B1F 식당
	09:00~12:00	고 ㅋ 【과제지도(사례연구)】	3F 괴정별 강의실
F /00	12:00~13:00	중 식	의 되당을 당기를 B1F 식당
5/29 (수)	13:00~15:00	장 역 【과제지도(사례연구)】	DIL 48
(1)	15:00~17:00	【와세시고(사데한 1)】 【이론강의】	3F 과정별 강의실
	18:00~19:00	석 식	B1F 식당
	07:00~08:30	조 식	B1F 식당
	09:00~12:00	【과제지도(사례연구)】	3F 과정별 강의실
F /00	12:00~13:00	중 식	B1F 식당
5/30 (목)	13:00~15:00	【과제지도(사례연구)】	
	15:00~17:00	【개선안 정리】 사례연구에서 도출된 개선안 개별정리(PPT 작성 및 제출)	3F 과정별 강의실
	18:00~19:00	석 식	B1F 식당
	07:00~08:30	조 식	B1F 식당
5/31	09:00~10:00	【개선안 정리】	
(금)	10:00~12:00	【 과정별 결과발표회 】 연수생별 과제 개선안 발표, 강사 총평 등	3F 과정별 강의실
	12:00~13:00	중 식	B1F 식당

- ※ 수업은 1시간당 50분 강의와 10분 휴식으로 실시(과정별 유동적 조율 가능)
- ※ 5/29(수), 5/30(목) 19:00~21:00 일본강사&보조강사&연수생간 정보교환 및 친목도모, 과제보충 등 을 위해 각 과정별 강의실 개방(희망자만 참가)